Exploring Grammatical Error Correction with Not-So-Crummy Machine Translation
نویسندگان
چکیده
To date, most work in grammatical error correction has focused on targeting specific error types. We present a probe study into whether we can use round-trip translations obtained from Google Translate via 8 different pivot languages for whole-sentence grammatical error correction. We develop a novel alignment algorithm for combining multiple round-trip translations into a lattice using the TERp machine translation metric. We further implement six different methods for extracting whole-sentence corrections from the lattice. Our preliminary experiments yield fairly satisfactory results but leave significant room for improvement. Most importantly, though, they make it clear the methods we propose have strong potential and require further study.
منابع مشابه
Discriminative Reranking for Grammatical Error Correction with Statistical Machine Translation
Research on grammatical error correction has received considerable attention. For dealing with all types of errors, grammatical error correction methods that employ statistical machine translation (SMT) have been proposed in recent years. An SMT system generates candidates with scores for all candidates and selects the sentence with the highest score as the correction result. However, the 1-bes...
متن کاملGrammatical Error Correction
Grammatical error correction (GEC) is the task of automatically correcting grammatical errors in written text. Earlier attempts to grammatical error correction involve rule-based and classifier approaches which are limited to correcting only some particular type of errors in a sentence. As sentences may contain multiple errors of different types, a practical error correction system should be ab...
متن کاملExploring the Role of Occurring Errors Distribution in the Distribution of Corrective Feedback Targets
This study attempted to compare corrected linguistic errors in foreign language classrooms and all errors occurring in these classes to see which types of errors are more attended to by teachers in relation to their occurrence in classes. For this purpose, 69 hours of the classes of 34 teachers teaching in different language schools were recorded and the errors corrected by these teachers were ...
متن کاملConstrained Grammatical Error Correction using Statistical Machine Translation
This paper describes our use of phrasebased statistical machine translation (PBSMT) for the automatic correction of errors in learner text in our submission to the CoNLL 2013 Shared Task on Grammatical Error Correction. Since the limited training data provided for the task was insufficient for training an effective SMT system, we also explored alternative ways of generating pairs of incorrect a...
متن کاملThe Effect of Learner Corpus Size in Grammatical Error Correction of ESL Writings
English as a Second Language (ESL) learners’ writings contain various grammatical errors. Previous research on automatic error correction for ESL learners’ grammatical errors deals with restricted types of learners’ errors. Some types of errors can be corrected by rules using heuristics, while others are difficult to correct without statistical models using native corpora and/or learner corpora...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012